β-Amyloid Precursor Protein Intracellular Domain Controls Mitochondrial Function by Modulating Phosphatase and Tensin Homolog–Induced Kinase 1 Transcription in Cells and in Alzheimer Mice Models

ABSTRACT

BACKGROUND: Mitophagy and mitochondrial dynamics alterations are two major hallmarks of neurodegenerative diseases. Dysfunctional mitochondria accumulate in Alzheimer’s disease–affected brains by yet unexplained mechanisms.

METHODS: We combined cell biology, molecular biology, and pharmacological approaches to unravel a novel molecular pathway by which presenilins control phosphatase and tensin homolog–induced kinase 1 (Pink-1) expression and transcription. In vivo approaches were carried out on various transgenic and knockout animals as well as in adeno-associated virus–infected mice. Functional readout and mitochondrial physiology (mitochondrial potential) were assessed by combined procedures including flow cytometry, live imaging analysis, and immunohistochemistry.

RESULTS: We show that presenilins 1 and 2 trigger opposite effects on promoter transactivation, messenger RNA, and protein expression of Pink-1. This control is linked to γ-secretase activity and β-amyloid precursor protein but is independent of phosphatase and tensin homolog. We show that amyloid precursor protein intracellular domain (AICD) accounts for presenilin-dependent phenotype and upregulates Pink-1 transactivation in cells as well as in vivo in a Forkhead box O3a–dependent manner. Interestingly, the modulation of γ-secretase activity or AICD expression affects Pink-1–related control of mitophagy and mitochondrial dynamics. Finally, we show that parkin acts upstream of presenilins to control Pink-1 promoter transactivation and protein expression.

CONCLUSIONS: Overall, we delineate a molecular cascade presenilins–AICD–Forkhead box O3a linking parkin to Pink-1. Our study demonstrates AICD-mediated Pink-1–dependent control of mitochondrial physiology by presenilins. Furthermore, it unravels a parkin–Pink-1 feedback loop controlling mitochondrial physiology that could be disrupted in neurodegenerative conditions.

Keywords: AICD, FOXO3a, γ-Secretase, Mitochondrial dysfunction, Mitophagy, Parkin, Pink-1, Presenilins, 3xTgAD Mice

http://dx.doi.org/10.1016/j.biopsych.2017.04.011

It arose recently that besides macroscopic lesions characterizing specific subsets of neurodegenerative diseases, mitochondrial function appears to be consistently affected in brain diseases (1,2). Indeed, mitochondrial deficits are now considered as a major hallmark in Alzheimer’s disease (AD) (3). In both familial and sporadic AD cases, early accumulation of structurally abnormal mitochondria has been evidenced (4,5), and such defects also stand in animal models of AD (6). Thus, β-amyloid precursor protein (βAPP) transgenic mice-derived neurons display drastically altered mitochondrial dynamics (6,7).

Exacerbated neuronal autophagy/mitophagy also corresponds to a consistent anatomical stigma in neurodegenerative diseases (2). In AD-affected brains, electron microscopy unraveled neuronal accumulation of autophagic vacuoles and impairment of autophagosomes maturation that ultimately yield amyloid-β (Aβ) overload (8). While both mitochondrial dynamics and mitophagy could well contribute to early phase of AD-linked neurodegeneration, little is known concerning the mechanistic defects that could account for such alterations.
Phosphatase and tensin homolog (PTEN)-induced kinase 1 (Pink-1) controls both mitochondrial dynamics and mitophagy by selectively enhancing mitochondrial fission (9) and recruiting parkin (PK) to damaged mitochondria (10), respectively. Pink-1 is a PTEN-induced putative kinase 1 (11), and it is noteworthy that PTEN expression is altered in AD brains in a region-specific manner (12) and appears to be involved in the synaptic plasticity and cognition in AD mice models (13). Strikingly, immunohistological detection also revealed Pink-1 expression in senile plaques (14). Overall, alteration of PTEN-Pink-1 homeostasis could well account for some of the defects taking place in AD.

It is remarkable that presenilin 1 (PS1) and presenilin 2 (PS2), which constitute the catalytic core of γ-secretase responsible for the ultimate cleavage yielding Aβ (15,16) and its C-terminal counterpart APP intracellular domain (AICD) (17) from [βAPP], regulate the level of PTEN (18). This led us to question of whether PSs could act as upstream regulators of Pink-1 and its associated functions. Here, we show that PS1 controls Pink-1 by a γ-secretase-dependent and [βAPP]-dependent but PTEN-independent mechanism. We show that AICD, which was shown to behave as a transcription factor (19–21), indeed controls Pink-1 transactivation and expression in a Forkhead box O3a (FOXO3a)-dependent process. AICD-mediated control of Pink-1 influences its mitochondrial and mitophagic functions. Finally, we demonstrate that PK, which acts as a transactivator of PS1 promoter (22), controls Pink-1 in a fully PS1-dependent but PTEN-independent manner. Thus, our study delineates, for the first time, a molecular cascade linking PS1 and Pink-1. Furthermore, we reveal a PS-dependent molecular link between PK and Pink-1 that could be part of a feedback loop responsible for their cellular homeostasis and mitochondrial health that could be altered in neurodegenerative condition.

METHODS AND MATERIALS

Cellular and animal models, promoter activities assay, messenger RNA (mRNA) analysis, and description of constructs are provided in the Supplement.

Drug Description and Administration Ex Vivo

The mitochondrial uncoupler carbonyl cyanide 3-chlorophenyl hydrazone (CCCP) and LY294002 (2-(4-morpholinyl)-8-phenyl-1(4H)-benzopyran-4-one hydrochloride) (23) (Millipore-Sigma; St Quentin Fallavier, France) were incubated at 10 μM for 15 hours. ELND006 (D6) was kindly provided by Elan Pharmaceuticals (South San Francisco, CA) and used in both ex vivo and in vivo studies (see “3xTgAD and In Vivo Drug Treatment” section below) (25). In ex vivo experiences, HEK293 and mouse embryonic fibroblast cells were treated for 15 hours with D6 (5 μM).

Cellular and Mouse Brain Sample Preparation and Western Blot Analysis

Western blot analysis of cellular and mouse brain samples was performed by standard procedures and is described in the Supplement.

RESULTS

PS1 and PS2 Differently Modulate Pink-1 Transcription in a PTEN-Independent Manner

We have examined the ability of PS1 and PS2 to modulate Pink-1 levels at both transcriptional and posttranscriptional levels. We show that Pink-1 expression is poorly detectable in mock-transfected HEK293 cells and could be enhanced on CCCP treatment (Figure 1A, B), in agreement with the well-established stabilizing effect of this uncoupling agent on Pink-1 protein (10). Stable expression of PS1 drastically enhances Pink-1 expression, while PS2 reduces Pink-1 to levels below CCCP-treated mock-transfected cells (Figure 1A, B). Interestingly, PS1 and PS2 also trigger similar opposite effects on Pink-1 promoter transactivation (Figure 1C) and mRNA levels (Figure 1D).

PSs regulate cellular levels of PTEN (18), a tumor suppressor thought to transcriptionally transactivate Pink-1 (11). Therefore, we questioned whether a direct PS–PTEN–Pink-1 cascade could mechanistically account for PS-mediated modulation of Pink-1 or whether alternative pathways could be envisioned. As expected, PS1 overexpression enhances PTEN protein (Supplemental Figure S1A) and mRNA (Supplemental Figure S1C) expression and transactivates its

3xTgAD Mice and In Vivo Drug Treatment

3xTgAD mice (harboring PS1 M146V, βAPPsw, and TauP301L transgenes) and nontransgenic (wild-type) mice (26) were housed with a 12-hour light/dark cycle and were given free access to food and water. All experimental procedures were conducted in accordance with the European Communities Council Directive of November 24, 1986 (86/609/EEC) and local French legislation. Two groups of 24 wild-type male mice (129/C57BL/6) and 25 3xTgAD male mice were used. Mice were treated daily for 10 days with either vehicle or D6 (30 mg/kg) (Elan Pharmaceuticals) (25) via oral gavage (27). Animals were sacrificed 6 hours after the last administration. Dissected hippocampi were either submerged for 2 days in RNA later RNA Stabilization Reagent (Qiagen, Marseille, France) for quantitative polymerase chain reaction mRNA analysis or reserved for membrane fractions preparation devoted to γ-secretase activity measurement (28), and Western blot analysis of AICD and βAPP C-terminal fragments were performed as described in the Supplement.

Adeno-associated Virus-Nuclear Localization Sequence-AICD Production and Mice Injection

Virus production and mice injection were performed according to previously described protocols (27,29) and are resumed in the Supplement.

Mitochondrial Potential Disruption Analysis

Mitochondrial potential was accessed using live imaging and flow cytometry analysis of tetramethyl-rhodamine methyl ester probe as detailed in the Supplement.

Immunohistochemistry

Immunohistochromical analyses of mouse brain slices are described in the Supplement.
promoter (Supplemental Figure S1B), while depletion of endogenous PS1 triggers the opposite phenotype (Supplemental Figure S1D, E). It is noteworthy that PS2 expression lowers PTEN protein levels, promoter activity, and mRNA levels (Supplemental Figure S1A–C), a feature reminiscent of that observed for PS2-mediated control of Pink-1 (see Figure 1A–D). As expected, we also observed a drastic reduction of Pink-1 mRNA levels and promoter activation in PTEN-deficient fibroblasts (Figure 1E, F). Altogether, these data show that fibroblasts display canonical cellular responses linking PS and PTEN, on the one hand, and PTEN and Pink-1, on the other. However, we show that PS-mediated control of Pink-1 remained unaltered by PTEN gene invalidation (Figure 1G), indicating that PSs likely control Pink-1 transcription by alternative PTEN-independent pathways. To rule out a possible artifactual influence of PS on Pink-1 due to the overexpression procedure, we examined the effect of endogenous PS on Pink-1 transactivation and mRNA levels. PS1 gene depletion lowers Pink-1 promoter transactivation (Figure 1H) and mRNA levels (Figure 1I), while PS2 gene ablation leads to barely detectable and not statistically significant effects (Figure 1H, I). The discrepancy between PS2 overexpression and deletion data could be explained by the previously described interplay between PS1 and PS2 (30). Thus, we showed that PS2 lowers Pink-1 expression. As such, PS2 overexpression via reduction of PS1 triggers Pink-1

Figure 1. Phosphatase and tensin homolog (PTEN)-independent control of PTEN-induced kinase 1 (Pink-1) transcription by presenilin 1 (PS1). (A, B) Pink-1 and actin protein levels in human embryonic kidney 293 cells stably overexpressing an empty vector (EV) (Mock), PS1, and PS2 complementary DNA in basal (−, white bars) and carbonyl cyanide m-chlorophenyl hydrazone (CCCP)-treated (+, black bars) conditions. Representative gels (A) of pooled data (B, n = 6) are shown. (C, D) Pink-1 promoter activity (C, n = 18) and messenger RNA (mRNA) levels (D, n = 9) in the above-described cell models were measured as described in the experimental procedures. (E–G) Pink-1 mRNA levels (E, n = 6) and promoter activity (F, n = 6) in control (PTEN+/+) or invalidated (PTEN−/−) mouse embryonic fibroblast (MEF) cells. In (G), Pink-1 promoter activity was measured in PTEN−/− cells after PS1 and PS2 overexpression (n = 9). Representative gels of PS1 and PS2 transfection efficiency and actin as gel charge control are provided in (G) (upper). (H, I) Pink-1 promoter activity (H, n = 12) and mRNA levels (I, n = 6) in control MEF cells (PS1+/+ or cells invalidated for either PS1 (PS1−/−) or PS2 (PS2−/−) were measured as described in the experimental procedures. (J–L) Pink-1 promoter activity (J, n = 9) and mRNA levels (K, n = 12) in control MEF cells (PS1+/+ or MEF cells devoid of both PS1 and PS2 (PS1−/−)). In (L), Pink-1 promoter activity was measured (n = 7) in PS−/− cells transiently transfected with either PT1 or PS2 complementary DNA as described in the experimental procedures. Representative gels of PS1 and PS2 transfection efficiency and actin as gel charge control are provided in (L) (upper panel). In all histograms, data are expressed as percentage of control (CT) taken as 100 and represent mean ± SEM (*p < .05; **p < .01; ***p < .001; ns, nonsignificant).
diminution, while PS2 depletion remains biologically inert. This suggests a dominant role of PS1 over PS2 in the control of Pink-1. Indeed, invalidation of both PS1 and PS2 lowers both Pink-1 promoter activation (Figure 1J) and mRNA levels (Figure 1K), a phenotype similar to the one observed with PS1 deletion only (Figure 1H, I). In agreement, in a double PS1/2 knockout background, PS1 only rescues the Pink-1 activation of its promoter (Figure 1L). Overall, these data show that PS1 is involved in the transcriptional activation of Pink-1 by a PTEN-independent mechanism.

PS1-Mediated Control of Pink-1 Is Dependent on Its Catalytic Activity

PSs are pleiotropic proteins (31) but act as the catalytic core of γ-secretase, the enzymatic complex yielding Aβ (15). We examined, by pharmacological and mutational approaches, the consequences of the blockade of PS-mediated catalysis for Pink-1. Mutation on the aspartyl residue in position 257 of its promoter (Figure 1L) demonstrates that PS1 abolishes its activity (32) and reduces Pink-1 protein expression (Figure 2A), promoter activation (Figure 2B), and mRNA levels (Figure 2C). Furthermore, inhibition of γ-secretase by two distinct inhibitors [D6 (25) and DFK-167 (33)] led to similar reductions of Pink-1 protein expression (Figure 2D). We examined whether pharmacological blockade of γ-secretase could also influence Pink-1 mRNA levels in vivo in triple transgenic mouse model (3xTgAD harboring PS1 M146V, APPswe, and TAUP301L transgenes) of AD (26). Interestingly, 3xTgAD mice exhibit increased Pink-1 mRNA levels at 3 months of age [i.e., when C99 (the γ-secretase-derived fragment of APP) accumulates in the absence of detectable Aβ (34)] and steadily until 12 months (Supplemental Figure S2A). As expected, D6 highly enhanced the expression of γ-secretase-dependent Pink-1 both in vitro and in vivo.

Figure 2. Phosphatase and tensin homolog-induced kinase 1 (Pink-1) control by presenilin 1 (PS1) is γ-secretase dependent. (A–C) Effect of the δS7A PS1 mutation on Pink-1 protein (A, n = 12), promoter activity (B, n = 9), and messenger RNA (mRNA) levels (C, n = 12) after transient transfection of human embryonic kidney 293 cells with an empty vector (EV) or mutated complementary DNA (257). Representative gels of PS1 transfection efficiency and actin as gel charge control are provided in (A) to (C) (upper panels). (D, E) Modulation of Pink-1 expression by γ-secretase inhibitors ex vivo (D, n = 12) and in vivo (E, n = 8–9). In (D, E), human embryonic kidney 293 cells were treated with DFK167 or DLN006 (D6) and then analyzed for Pink-1 expression by Western blot analysis as described in the experimental procedures. Representative gels of Pink-1 and actin of pooled data are provided in (D, left). In (E), 4-month-old control (CT) and triple transgenic (3xTgAD) mice were daily treated for 10 days with a vehicle (CT, black bars) or with γ-secretase inhibitor (D6, white bars), and then Pink-1 mRNA levels (n = 8–9) were analyzed at 4 months of age as detailed in the experimental procedures. Data are expressed as percentage of CT taken as 100 and represent mean ± SEM (p < .05; **p < .01; ***p < .001; ns, nonsignificant). CCCP, carbonyl cyanide m-chlorophenyl hydrazine.

PS-Mediated Control of Pink-1 Is Affected by βAPP Modulation

Besides βAPP, which originally allowed characterization of PS catalytic function (15), numerous proteins were delineated as additional γ-secretase substrates (17). Thus, we examined the contribution of βAPP to PS1-dependent control of Pink-1 in human cells. Wild-type βAPP overexpression augmented Pink-1 protein (Figure 3A) and mRNA (Figure 3C) expressions and led to enhanced Pink-1 promoter transactivation (Figure 3B). Interestingly, these augmentations were further enhanced in cells expressing the Swedish mutated βAPP (Supplemental Figure S4A–C). Conversely, mouse embryonic fibroblast cells that naturally lack endogenous βAPP family member APLP1 and that are genetically invalidated for both
APP and its additional family member APLP2 (thus considered as triple knockout [tko] in Figure 3) show reduced Pink-1 promoter activity (Figure 3D) and mRNA levels (Figure 3E). Of importance, PS1 overexpression enhances Pink-1 promoter transactivation in wild-type (control) cells but not in tko cells (Figure 3F). Finally, D6 reduces Pink-1 promoter activation and mRNA levels in wild-type (control) fibroblasts but not in tko fibroblasts (Figure 3G, H). Altogether, the above data demonstrate that PS1-mediated and γ-secretase–linked control of Pink-1 occurs via the γ-secretase cleavage of endogenous jAPP.

AICD Controls Cellular Pink-1 Transcription in a FOXO3a-Dependent Manner

Both Aβ and AICD harbor transcription factor properties (35–37). However, several lines of reasoning and independent data led us to consider AICD as the main mediator of PS1-mediated control of Pink-1. First, AICD is a transcription factor (17) that is mainly generated in the amyloidogenic pathway from its precursor C99 by γ-secretase (38–40). Second, expression of jAPP harboring the Swedish mutation thought to potentiate BACE1-mediated formation of C99 increases Pink-1 promoter transactivation and mRNA levels (Supplemental Figure S4A–C). Third, APPx, the APP fragment that undergoes β/γ-secretase cleavages, thereby leading Aβ (41), but that lacks AICD, did not modulate Pink-1 expression (Supplemental Figure S4D). Fourth, we previously designed 2xTgAD mice that were derived from intercrossing of the F1 progeny of 3xTgAD with wild-type mice (34). At late stages, 3xTgAD and 2xTgAD mice accumulate C99 and AICD to similar extents, while Aβ is present only at barely detectable levels in 2xTg mice (34) compared with 3xTgAD mice. Interestingly, 12-month-old 2xTgAD and
3xTgAD mice display similar increases of Pink-1 mRNA levels (Supplemental Figure S2B). Fifth, in vivo inhibitor-mediated full blockade of γ-secretase in 3xTgAD mouse brain (Supplemental Figure S3A) drastically reduces AICD expression (Supplemental Figure S3B) and concomitantly restores Pink-1 mRNA levels to control values (Figure 2E).

Based on these observations, therefore, we examined the putative influence of AICD on Pink-1. We used an AICD construct harboring a nuclear localization sequence (nls) aimed at potentiating its targeting to the nucleus. Figure 4 shows that AICDnls (AICD) overexpression increases Pink-1 protein expression (Figure 4A), promoter transactivation (Figure 4B), and mRNA levels (Figure 4C). Figure 4D shows that AICD overexpression also increases Pink-1 promoter transactivation in tko fibroblasts.

We mapped the Pink-1 promoter region involved in its AICD-mediated transactivation. As expected, AICD increased transactivation of full-length Pink-1 promoter (cf. black and white full-length bars in Figure 4E). The 5’ deletions data indicated that deletion of the −2055 to −1354 Pink-1 promoter region fully abolished AICD-mediated increase in Pink-1 promoter activation (cf. full-length and 1.3 constructs in

![Image](Biological Psychiatry March 1, 2018; 83:416–427 www.sobp.org/journal 421)
PK Controls Pink-1 Transcription in a PS-Dependent and PTEN-Independent Pathway

We previously demonstrated that besides its well-characterized ubiquitin-ligase activity (44), PK also behaved as a transcription factor (45). We showed that, among its various targets, PK directly upregulated PS1 and downregulated PS2 promoter transactivations and protein expressions (22). These opposite effects of PK on PS, which were strikingly similar to the opposite effects of PS1 and PS2 on Pink-1 transcription (see Figure 1), led us to question whether PK could modulate Pink-1 transcription via PS1. Five lines of direct and indirect evidence support this hypothesis. First, PK overexpression increases Pink-1 promoter transactivation and mRNA levels (Figure 5A, B). Second, deletion of endogenous PK reduces Pink-1 transcription and mRNA expression ex vivo (Figure 5C, D). These data were corroborated by experiments aimed at pharmacologically blocking FOXP3 with LY294002 (cf. gray bars in Figure 4G), showing that this inhibitor fully prevents AICD-induced increase in Pink-1 promoter activity. Overall, our data unravel a linear molecular cascade linking PS1, IAPP/AICD, FOXP3, and Pink-1.

AICD Modulates Mitochondrial Physiology in a Pink-1-Dependent Manner

If the above cascade is true, one anticipates an AICD-associated modulation of Pink-1–mediated functions. Pink-1 has been consistently involved in the control of mitophagy and mitochondrial dynamics (9).

Mitochondrial membrane potential directly reflects mitochondrial health and can be classically measured to follow mitophagy. First, we used tetramethylrhodamine methyl ester as an indicator of mitochondrial membrane potential alterations to analyze the impact of endogenous Pink-1 reduction on mitochondrial function. As expected (48), both confocal (Figure 6A, B) and fluorescence-activated cell sorting (Figure 6C) analyses indicate that short hairpin RNA–induced Pink-1 knockdown in SH-SYSY cells (Pink-1d10) or full genetic depletion (Pink-1f/f) in fibroblasts (Supplemental Figure S5) significantly reduced mitochondrial membrane potential (cf. black and white control bars in Figure 6B, C and
It is noteworthy that the D6 reduced tetramethyl-rhodamine methyl ester fluorescence in wild-type cells, a phenotype abolished by endogenous Pink-1 depletion in both Pink-1KD and Pink-1-/- cells (Figure 6B, Cand Supplemental Figure S5, respectively). This effect was confirmed by use of another γ-secretase inhibitor, DFK167, in Pink-1-2/2 fibroblasts (Supplemental Figure S5). This set of data clearly indicates that Pink-1-mediated control of mitophagy/autophagy is modulated by γ-secretase–linked events in these cells. To directly link this function to AICD, we examined the influence of AICDnls on LC3II and p62, two classical markers of autophagosome formation and autophagic degradation, respectively. First, we confirmed that reduction of Pink-1 in Pink-1KD cells (Supplemental Figure S6A–C) modulated p62 and LC3II expressions in an opposite manner in stress conditions (CCCP in Supplemental Figure S6D–F), suggesting a decreased autophagic process as previously described (49,50). Interestingly, AICDnls overexpression increased LC3II (cf. black bars in Figure 6D, E) and reduced p62 (cf. black bars in Figure 6D, F) levels in wild-type SH-SY5Y cells but not in Pink-1KD cells (cf. white bars in Figure 6D–F), indicating that AICDnls promotes a pro-autophagic phenotype that is fully dependent on endogenous Pink-1. It is noteworthy that FOXO3a controls autophagy via its transcription factor properties (51,52). Thus, it is not excluded that AICD/FOXO3a interaction may alter expressions of additional genes involved in nonselective autophagy.

To foster the implication of AICD in mitophagy control, we have analyzed its impact on the levels of TIM23 and TOM20, two reliable markers of mitochondrial mass used to follow the mitophagy process (53,54). First, we confirmed that Pink-1 knockdown leads to accumulation of TIM23 (Supplemental Figure S6D, G) and TOM20 (cf. white bars in Supplemental Figure S6D, H) levels in CCCP conditions. Interestingly, AICDnls overexpression decreased TIM23 (cf. black bars in Figure 6D, G) and TOM20 (cf. black bars in Figure 6D, H) levels in wild-type SH-SY5Y cells but not in Pink-1KD cells (Figure 6D and cf. white bars in Figure 6G, H).

Finally, mitochondrial dynamics are mainly supported by fusion/fission processes that can be followed by canonical markers such as mitofusin 2 and dynamin-like protein 1 (1). We confirmed that Pink-1 knockdown leads to accumulation of...
mitofusin 2 and dynamin-like protein 1 levels (Supplemental Figure S6I–K), probably due to the decrease of Pink-1-mediated PK recruitment and E3-ligase activity (55,56). Again, conversely, AICDNLS expression reduces dynamin-like protein 1 and mitofusin 2 expressions in Pink-1 control cells (Figure 6D, I, J), a phenotype fully prevented by Pink-1 knockdown (Figure 6D, I, J). The above data indicate that both γ-secretase inhibition and AICDNLS expression modulate mitophagy and mitochondrial dynamics in a Pink-1-dependent manner, thereby confirming AICD as a potent modulator of Pink-1-mediated phenotypes.

AICD Modulates Pink-1 Transcription In Vivo

To reinforce our cell biology approaches, we examined whether AICD could modulate Pink-1 protein and mRNA levels in vivo in mouse brain. First, we used an adenoviral approach to express AICDNLS in neonatal mouse brain. As illustrated in Figure 7A, AICDNLS is expressed in hippocampal regions (1 month old) and appears to be clearly associated with 4′,6-diamidino-2-phenylindole nuclear labeling (Figure 7A, lower panels), indicating its efficient nuclear translocation in vivo. AICDNLS increased expressions of Pink-1 protein (Figure 7B) and mRNA levels of Pink-1 and neprilysin, a canonical AICD transcriptional target (20) (Figure 7C). Second, we analyzed the impact of AICD in a transgenic mice model stably overexpressing AICD (57,58). As previously described (59), AICD-Tg mice display enhanced neprilysin mRNA levels (Figure 7E) and increased Pink-1 protein expression and mRNA levels (Figure 7D, E). Altogether, these two independent mice models of AICD expression concur to conclude that AICD acts as a genuine modulator of Pink-1 promotor transactivation in cells and in vivo.

DISCUSSION

Specific histological lesions serve as anatomical signatures to characterize subsets of neurodegenerative diseases. However,
Pink-1 Regulation by Presenilins

additional dysfunctions such as protein aggregation (60,61), misfolding and more recently spreading (62), proteasome dysfunction (63), endoplasmic reticulum stress and unfolded protein response activation (64), as well as other vital cellular processes, are also seen as common denominators of brain diseases. It has also been suggested that mitochondrial dysfunctions could well underlie at least part of neurodegenerative processes. Thus, disruption of mitochondrial dynamics reflected by altered balance between fission and fusion processes or inefficient mitochondria quality control by mitophagy has been consistently reported (1,2). Such defects have been described in AD (65), but the molecular mechanisms underlying these observations remained poorly understood.

Pink-1 is a kinase that harbors a dual mitochondrial and cytosolic localization. Among Pink-1-related functions, its involvement in the control of mitochondria morphology was first documented (66), and then Pink-1 was shown to control the mitophagy process (49). Interestingly, Pink-1-like immunoreactivity colocalized with senile plaques in AD-affected brains (67). These data led us to examine the mechanisms by which Pink-1 could account for the mitochondrial dynamics and mitophagy alterations taking place in AD.

We delineated a molecular cascade linking PS1 and Pink-1. Thus, overexpression/depletion of PS1 increases/lowers Pink-1 promoter transactivations and mRNA and protein expressions. Cellular biology and pharmacological approaches, as well as in vivo models, indicate that PS1-mediated control of Pink-1 involved effects of PS1 on its transcription and modulation of its protein expression (49). Interestingly, Pink-1 appeared to control the mitochondrial function. This interplay could be of importance in neurodegenerative diseases. Thus, we showed that several PK mutations responsible for familial Parkinson’s disease abolish its transcriptional function (45). In these cases, lowering PS1 could ultimately drive reduction of Pink-1 and thereby compromise the adaptive response to mitochondrial dysfunction. On the other hand, in both sporadic and most familial cases of AD, AICD expression is likely increased due to either a lower degradation rate linked to mitochondrial dysfunction (72). This could explain the macroscopic observation of an increased expression of Pink-1 in senile plaques and reflect a cellular adaptation response to circumscribe the neurodegenerative process. Overall, our study enlightens a novel cellular cascade and delineates potential targets for therapeutic intervention.

ACKNOWLEDGMENTS AND DISCLOSURES

This work was supported by the Conseil départemental des Alpes Maritimes and the Foundation Claude Pompidou. This work was developed and supported through the LABEX (Laboratory of Excellence, Investments for the Future) DISTALZ (Development of Innovative Strategies for a Transdisciplinary Approach to Alzheimer’s Disease) and the Hospital University Federation OncoAge. TG is funded by the Ligue Contre le Cancer.

The authors report no biomedical financial interests or potential conflicts of interest.

ARTICLE INFORMATION

From the Institut de Pharmacologie Moléculaire et Cellulaire (TG, ED, MC, AB, WEM, LR, JD, IL, RP-P, FC, CAdC), Université Côte d’Azur, Centre
National de la Recherche Scientifique (CNRS), Institut National de la Santé et de la Recherche Médicale (INSERM), Valbonne; Center of Research on Myology (M-BG, MB), Pierre and Marie Curie University, CNRS, INSERM, Paris; and Alzheimer & Taopathies (NS, MC), Jean-Pierre Aubert Research Centre, Faculté de Médecine, L’Institut de Médecine Précédive et de Recherche Thérapeutique, INSERM, Lille, France; State Key Laboratory of Cellular Stress Biology (HY), Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian, China; Princess Margaret Center (VS), University Health Network and Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada; Department of Neurosciences (SWP), Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio; and Instituto de Medicina Molecular (VAM), Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal.

Address correspondence to Cristine Alves da Costa, Ph.D., UMR 7275, CNRS, CNRS. Accepted Apr 10, 2017; revised Apr 22, 2017. Supplementary material cited in this article is available online at http://dx.doi.org/10.1016/j.biopsycho.2017.04.011.

REFERENCES

34. Laritzen I, Pardossi-Piquard R, Bauer C, Brigham E, Abraham JD, Ranaldi S, et al. (2012): The γ-secretase-derived C-terminal fragment
Pink-1 Regulation by Presenilins

of [JAPP, C99, but not Aβ], is a key contributor to early intraneuronal lesions in triple-transgenic mouse hippocampus. J Neurosci 32: 16243–16255.

